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This work shows that graph theory provides a framework to quantify the behavior of the time-
correlation function among precipitation records within a given region. The method amounts to consider
each station, where one data series was recorded, as a vertex in the graph. An edge, characterized by its
geodesic distance d, is inserted between any pair of nodes, for which the Pearson correlation coefficient R,
calculated from the corresponding series, is larger than a threshold value R,. Then, the dependence
between N(g), the total number of Pearson-correlated pairs of stations with geodesic distance d < ¢, is
evaluated as a function of €. Results are presented for a set of spatially distributed pluviometric stations
in Northeast Brazil. The reliability of the proposed procedure is tested in a two-fold way: First, values of
N(¢g) are evaluated for graphs built up by sets of regular and random distributions of nodes within the
actual region where the data is collected. Next, an investigation of the influence of the choice for Ry, on
the results is performed. The results lead to the identification of a power law N(g) ~ €* for all time
periods and regions that have been investigated, suggesting the presence of a robust non-metric fractal
behavior. The value of « is found to depend both on seasonal and intrinsic features of the region rainfall
distribution, but rather weakly on the value of R;,. The comparison of the results shows that, in contrast
with the values obtained from Hurst exponent analysis, the values of « are related to the uniformity of
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Pearson correlation within the considered region, not with persistence of the signal.
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1. Introduction

Rainfall events result from the interplay of several physical
phenomena, most of which can be individually and adequately
described by the basic laws of mechanics and thermodynamics.
Despite the knowledge of the basic phenomena, the accurate
description of an actual rainfall occurrence is still a rather complex
issue, as this requires the assembling a huge number of individual
events, for which we ought to know the proper initial and
boundary conditions. In the last decades, a huge progress was
achieved in both weather forecast and description of climate
evolution. It results from several improvements in meteorological
measurements and large-scale computing facilities, what makes it
possible to run precise algorithms with accurate boundary
conditions. The progress includes sophisticated analyses of
recorded and simulated data, like spatial and temporal statistical
correlations, scaling properties, topological properties of spatial
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event distribution, and so on. Finally, it also allows for an improved
interpretation of past recorded data.

The investigation of historical rainfall records now includes
several mathematical methods to detect spatial and temporal
statistical scale invariance (Lovejoy and Mandelbrot, 1985; Lovejoy
and Schertzer, 1991; Rubalcaba, 1997). This is a ubiquitous
property found in a large number of natural systems that are
characterized by a large number of degrees of freedom interacting
in a complex nonlinear way (Koscielny-Bunde et al.,, 1998;
Mandelbrot and Wallis, 1969; Mandelbrot, 1982; Turcotte, 1992).

In this work, we use concepts of graph theory to analyze spatial
patterns in time-correlation function among rain events, using
recorded data from a set of stations in Northeast Brazil. In previous
contributions (Andrade et al., 1998; Miranda and Andrade, 1999;
Miranda et al., 2004), we investigated properties of rain events in
this region with concepts of statistical scale invariance within the
data, which can be expressed in terms of temporal and spatial
Hurst exponents. The method we use herein is similar to that
proposed for the analysis of brain activity signals (Eguiluz et al.,
2005). Within this approach, non-local spatial dependence is
estimated by evaluating the Pearson coefficient between time
series of pairs of stations.
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As we will show later on, the main results of this work refer to a
very clear scaling behavior of the distribution of the number of
Pearson-correlated pairs of stations (ij) with respect to the
geodesic distance d(ij) (henceforth referred to as distance)
between the stations (ij) over the earth surface. The value of
the power law exponent allows us to quantify the correlation
magnitude. This way, we can identify sub-regions within North-
east Brazil that are subject to the same or distinct rainfall regimes.
These results corroborate early findings based on Hurst exponent
analyses.

This work is organized as follows: Section 2 reviews the most
relevant features of the pluviometric regimes in Northeast Brazil
and describes the data sets used in our study. Section 3 presents
the very basic concepts of graph theory and the method used for
graph construction based on the evaluation of the spatial
correlation. Results are discussed in Section 4, while Section 5
closes the paper with a comparison of our results with those
obtained by other approaches.

2. Data sets and climate in Northeast Brazil

Northeast Brazil is one of the largest regions of the world where
semi-arid climatic condition prevails (Hastenrath et al., 1987;
Nimer, 1989). The region extends over more than 1.540.000 km?,
from which some 512.000 km? at its south most part corresponds
to the state of Bahia. Many global circulation systems influence the
climate of the region, from which the most important are
(Hastenrath, 1984; Chaves and Cavalcanti, 2001):

(a) The seasonal displacement of the of the inter-tropical
convergence zone, which affects mostly the northern part of
the region;

(b) The rather stable high-pressure zone in the center of Brazil
during winter, which restricts the humid season of the inland
to the late spring, summer and early autumn;

(c) The constant flow of sea wind in the humid east coast region;

(d) The influence, on the state of Bahia, of the low-pressure humid
fronts stemming from southern part of the continent.

These factors give rise to several local climate aspects that are
combined to the prevalent large scale features, consisting of semi-
arid climate in the interior and a very humid regime along the coast
(Nimer, 1989). The influence of local and global characteristics on
the scaling properties of pluviometric records has been addressed
in previous studies (Andrade et al., 1998; Miranda and Andrade,
1999; Miranda et al., 2004).

We base our investigation on two data sets (S1 and S2), one of
them restricted to the state of Bahia, while the second includes
data from stations located all over the Northeast region. The first
one, provided by ADENE (Agéncia Nacional para o Desenvolvi-
mento do Nordeste, Division of Bahia), contains daily precipitation
records from 1979 to 2000, for 514 stations. The second one,
collected by NCAR (National Center for Atmospheric Research,
USA), contains daily precipitation records, from 1904 to 1983, for
2346 stations from all 9 states of NE Brazil, including Bahia. In
Fig. 1, we show the geographical location of the stations in the data
sets.

The stations of set S1, all of them located in the state of Bahia,
are distributed over an irregular region bounded by a box of
roughly 1000 km x 1000 km.The stations of the set S2 are
distributed over a region of 2000 km x 1000 km, where the larger
axis is directed along the south-north direction. To investigate the
effect of latitude on our results, we have scrutinized the data in set
S2 in three different ways. In first place, we take into account the
stations to the north of (52a) Northeast, what restricts the stations

Fig. 1. Geographical distribution of stations in ADENE (a) and NCAR (b) data sets.
The stations in states Piaui and Maranhdo (northwest) were not included in the
analysis.

to a region of roughly 1000 km x 1000 km. The stations of the
second set (S2b) are distributed over roughly 1000 km x 1000 km
square box, where the south-north axis includes some 500 km in
the north part of the state of Bahia and 500 km in the south of the
previous region. Finally, the third set takes into account all stations
in the set S2.

We call to attention that, in both data sets, the number of
stations with uninterrupted sequence of days with valid entries is
rather small. So, in order to enrich statistics and minimize
fluctuations, making the scaling behavior more visible, we consider
the data from the time interval including the largest number of
stations with valid entries. The time interval 1979-1983 results
the best choice satisfying this condition for both S1 and S2.

3. Graph setup based on rainfall data
3.1. Basic concepts of graph theory

A graph G(V,E) consists of a finite non-empty set V(G) of
elements v called vertices, a finite non-empty set E(G) of elements e
called edges, and a function F(G) that associates to each element
e € E(G), a pair (v1,12) € V x V called the extremes of e. Undirected
graphs have an additional property ensuring that, if a pair (v;,1,) is
associated with an edge e, € E(G), the pair (v, 17) is also included
in G(V,E). Graphs are usually represented by diagrams, where the
elements of V and E correspond, respectively, to dots and lines
connecting pairs of dots, in such a way that the above definition is
satisfied.

A graph G(E,V) of n vertices can be represented, in a very
convenient way, by its adjacency matrix M. The matrix elements
m(ij) of M are set to 1 or 0, according to whether the vertices i and j
are connected by an edge or not. Therefore, two vertices i and j are
adjacent, or neighbors, if m(ij)=1. The number k; of adjacent
vertices to a vertex i € V(G) is called the degree of i. The value k; is
obtained by summing over the elements m(i,j) of the row i, as can
be observed in Fig. 2.

The graph definition is very general, so that it can be used to
describe many distinct physical situations. If we fix the number of
nodes n, the resulting graph depends only on the rules that decide
whether the pairs of nodes are connected by an edge. Such rules
must be judiciously chosen if a graph is intended to represent a
particular system. The resulting edge distribution may range from
a completely ordered and regular pattern to a fully disordered one.
For instance, the square lattice, defined on the surface of a two-
dimensional torus, is a realization of a regular graph, where k; =4
for any i. By contrast, the one-parameter Erdés-Renyi graph, which
is defined only by the constant probability p < 1 that any pair (i,j) is
connected by an edge, is the paradigm of a fully random graph. If
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Fig. 2. Example of a simple graph: (a) geometric representation where the nodes are
labeled by capital letters running from A to E and (b) adjacency matrix, where lines
and columns are labeled according to the nodes they correspond to.

p =1, we obtain a complete ordered graph, in which all pairs of
vertices are connected.

It is possible to assign a weight w(i, j) to the edges of a graph.
This is very useful when a graph is intended to describe a particular
phenomenon, in which the strength of the interaction among the
different degrees of freedom, represented by nodes, is non-
uniform.

3.2. Pearson correlation criterion for graph construction

The methodology we use to define pluviometric graphs is based
on the behavior of signal correlation. This approach has been
previously used to build brain functional graphs (Eguiluz et al.,
2005). In that work, the authors first divide the brain volume into
geometrical cells that are associated with nodes. Next, the level of
local brain activity, measured by different blood fluxes through
distinct geometric cells in dynamical functional magnetic tomo-
graphy, is recorded as function of time. In the current work, the
geometrical brain cells are replaced by the meteorological stations,
and the corresponding rainfall time records play the role of the
local brain activity series. In addition to these basic ingredients, we
also take into account the values d(ij) in our data set.

The essence of the method is to scrutinize the data, within a
suitable time interval, and evaluate the cross-correlation function
among individual time series. The presence of correlation is
measured by linear correlation coefficients, as those proposed by
Pearson, Spearman or Kendall (Kendall and Gibbons, 1990). For the
current study, the Pearson coefficient R(i,j) defined by

n n n
ny SuSic = Si) Sit
t=1 t=1 t=1

() P ()

is quite adequate to identify and characterize drought and rain
periods. In (1), n represents the number of days in the considered
time interval and Sy, represents the rain amount of station x on the
tth day.

The set of Pearson coefficients R(i,j), which can be regarded as
matrix elements of a correlation matrix R, indicates how strongly
correlated any pair of stations is. Adapting the method described
previously (Eguiluz et al., 2005) R is used to define a graph, where
the vertices consist of the stations in the data set, while the edges
are inserted into the graph depending on the value of R(i,j). Thus, by
choosing a suitable threshold value R, the graph can be defined by
its adjacency matrix as:

1, ifR(, j) > Re

2
0, ifR(i,j) <R @

mi.j) = {
The existence of a common climate causality relation on two
distinct stations is represented by the minimum level of
correlation Ry, required to add an edge to the graph. Within this
procedure, it is not likely that fortuitous event coincidence, leading

to weakly correlated events for a long enough time interval n, can
be mixed with highly correlated events among those stations that
depend on similar rain mechanisms. We have mainly adopted the
same threshold value Ry, =0.7 used previously (Eguiluz et al,
2005), although we have explored also other values of R, as will be
discussed in the next section.

The graphs generated according to (1) and (2) indicate how the
rainfall correlation is spatially distributed. It is worthy calling the
attention that locality is not necessarily the most important
criterion for existence of edges in the graphs. Indeed, given two
pairs of stations (ij) and (k,), we find many situations where
R(ij) < R(k,]) but d(ij) < d(k,I).

This characteristic of R is adequate to capture several
particularities in the spatial dependence of climate variables. As
mentioned in Section 1, climate results from the coupling of local
and global dynamics, as local topography and globally displace-
ment of air masses. In such situations, small-scale heterogeneities
may well coexist with large scale homogeneity.

In order to quantify the spatial dependence, we implemented a
numeric algorithm to count N(¢), the number of edges connecting
pairs (i) of stations for which d(ij) < &. The algorithm runs until &
reaches the value corresponding to the largest distance between
any two stations in the considered region. The dependence
between N(¢) and ¢ may indicate the existence of a fractal like
scale invariant measure in that space. This is true if the resulting
points in the N(¢) x ¢ plane follow a power law function

N(g) ~e“. (3)

The systematic analysis of graphs obtained for several time
intervals and for distinct climatic regions of the world should
reveal to which extent the scale invariance defined by (3) is a
robust property of rainfall patterns. Furthermore, the obtained
values of the exponent «, as well as the range of distances where
(3) accurately fit the data, provide information on the local
dependence of fractal-like properties of rain distribution. This may
lead to the identification of one further useful fingerprint to
characterize climatic diversity.

4. Spatial dependence of graphs

Let us first discuss the tests carried out to validate the
algorithms and methodology used to obtain results for actual
data. We start with the most simple situation, consisting of a
square lattice with 23 x 23 =529 nodes, where the distance
between nearest neighbors is 31 km. For this particular choice, the
number of nodes in the lattice and surface where they are
distributed closely match the corresponding number of stations in
the set S1 and area of the state of Bahia. We build a graph with
connections between any pair of nodes and, for the purpose of
reducing finite size effects, count the number N(¢) of connected
pairs of nodes only within a circle of radius ¢ centered at the point
(356, 356)km. As expected, the slope « of the curve log(-
N(€)) x log(e) is nearly constant until & ~ 356 km, as shown in
Fig. 3. For larger values of &, finite size effects (the circle diameter
exceeds the side of the square) reduces the number N(¢) in
comparison to that for larger domains, so that the slope deviates
from the value « = 2 found for ¢ < 356 km.

Next, we considered complete graphs formed by 514 randomly
distributed nodes into two two-dimensional domains: the same
square box as before and the region limited by the actual border of
the state of Bahia. Now N(¢) includes all pairs (ij) for which
d(ij) <e. According to the curves shown in Fig. 3 we find,
respectively, o =1.92 and 1.82 for random distributions on the
square box and the region limited by the border of the state of
Bahia.
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Fig. 3. Scaling analysis for complete graphs formed by the set of geographically
disturbed stations and a regular lattice. Data refers to the number of connected pairs
of nodes as function of the maximal edge size. Both sets show power law with
exponent « ~ 2.

Finally, the last curve in Fig. 3 was obtained when we
considered the complete graph formed by 514 nodes occupying
the actual positions of the stations in the set S1. The scaling
behavior with o =1.93 extends almost to & <500 km. A new
feature is the presence of deviations from the power law behavior
in the small scale region ¢ < 20 km. This behavior, which is also
evident in the corresponding curve for the set S2, results from the
decision not install pluviometric stations in two close places.

The complete graphs for the sets S1 and S2 correspond to those
produced within the proposed framework when Ry, =0. At the
other extreme value Ry, =1, the graphs consist only of isolated
nodes, where o« cannot be evaluated. Thus, the value of Ry, plays an
important role in the pattern of the obtained graphs. We present
results mainly for Ry, = 0.7, which is restrictive enough to explicit
different graph patterns related to seasonality, and also lie far apart
from the two extreme values 0 or 1 that carry no information on
rainfall dynamics. As the results in Fig. 3 lead to values o ~ 2, any
decrease from this value results from changes in the graphs
produced by precipitation dynamics.

To investigate the influence of the adopted value of R, let us
consider the global correlation effect in our data set measured by
Pearson coefficient. In Fig. 4, we draw P(R), the integrated
distribution of values of R for pairs of stations, as a function of R
for the different analyzed regions and months of the year. The
sharp increase in P(R) for low values (<R =0.2) results from an
expressive number pairs of stations that are not significantly
correlated. For all curves, it is verified that P(R) > 0.7 when R > 0.5,
while they approach the normalized value P=1 quite smoothly.
Seasonal differences are indicated by a larger number of less
correlated stations in the dry seasons, what is reflected in the
height and the position of the step for R < 0.2. Despite these clear
features, it is not possible to infer, from the bare analysis of P(R), a
precise value for the choice of an adequate value for Ry, apart from
requiring that P(Ry;) should be close to 1. As we show in Fig. 6b by
direct comparison of results for different values of Ry, the
conclusions we derive from results for the adopted value
R:, = 0.7 are much the same to those for any value of Ry, within
a broad interval around it.

The results for the actual data fit well into the general
framework we obtained for the test situations. Since our
investigation covers the years 1979-1983, it required the
construction and analysis of a total of 5 x 12 x 4 distinct graphs
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Fig. 4. Integrated distribution P(R), as function of function of R for four distinct
months in the year 1979. The rapid increase in the value of P(R) for low values of R
results from the pairs of low correlated stations. This contribution is greatly
enhanced in the dryer months (October and July) in comparison to those with more
abundant rainfall (April and January).

of N(¢) x ¢ for the correlation measured over time interval of 1
month for each one of the four sets characterized in Section II.

The series of results in Fig. 5 evidence that pluviometric
dynamics does affect the existence scaling behavior among
Pearson-correlated set of stations. In contrast to the former
situations (complete graph and regular lattice), where the
results are only related to the geometrical/geographical dis-
tribution of stations, pluviometric dynamics influences the
extension and strength of scaling. The new effect can still be
observed because Pearson’s methodology extends its range to
larger scales, which clearly surpasses the limits indicated by the
spatial Hurst exponent (~150 km). The main difference between
the two measures is related to the fact that the former one
accounts only for short-range causality relations in pluviometric
phenomena.

In Fig. 5, we show a sample of the curves that lead to the
evaluation of the exponents «. Each panel displays results for the
January data in the subsequent years 1979-1983. In Fig. 5a and b,
the horizontal axes indicate the presence of Pearson-correlated
pairs of stations in the sets S1 and S2a that are as distant as 800 km.
Taking into account the aspects related to finite size effects of the
samples, discussed for Fig. 3, we see that a power law is valid in the
middle range scale (20-500 km). Similar graphs, obtained for the
other months, lead to the corresponding values of «. The year
averages of «, indicated by @, together with the year dispersion Aa
(indicated by error bars), are drawn in Fig. 6 for the sets S1 and S2a.
With the exception of the year 1980, when a particularly strong El-
Nifio effect globally influenced the world climate, the results
indicate almost coincident values of & for the two distinct sets. This
indicates that, in each data set corresponding to the southern and
northern parts of the region, the stations are Pearson-correlated in
a very similar way.

These results can be compared with those derived from
temporal and spatial Hurst analysis. They systematically indicate
that the same series considered herein show a higher degree of
persistence (large values of Hurst exponents H) in the lower
latitude region S2a, expressed by a general trend in the value of H
to decrease when the latitude increases S1. This has been explained
by the presence of distinct driving rainfall systems in the northern
and southern part of Northeast Brazil.

Before we discuss the results for the sets S2b and S2, let us recall
that they include stations from the two quoted sets S1 and S2a. The
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be recovered.

scaling behavior for the January months are displayed in Fig. 5c and
d, while average values @ and dispersion A« are shown in Fig. 6. It
is possible to observe that the scaling regions for the sets S2b and
S2 are roughly the same as those for the sets S1 and S2a. Although
the maximal distance between the stations of set S2 is twice as
large as those of the other three sets, the scaling interval does not
increase along the same way. The corresponding values of
& € (1.39,1.65) are characterized by a strong decrease in compar-
ison to those of sets S1 and S2a, when & € (1.54,1.85). The decrease
is still more evident for the set S2b.

Despite the distinct persistent character of sets S1 and S2a, we
note that they display similar values for &, which are larger than
those for the sets S2b and S2. Since the later two sets include data
from stations driven by distinct pluviometric systems, we conclude
that the value of « is related to the uniformity of Pearson
correlation within the considered region, not with persistence of
the signal. This interpretation aggress with the stronger decrease
observed for S2b, where the effect of mixing the influences of the
distinct pluviometric systems is increased to a maximum.

5. Conclusions

In this work, we developed a new method that uncovers the
existence of a new scale invariance property in pluviometric
records within a given region. Despite the fact that the motivation
of our work was provided by graph concepts, the specific results we
presented herein could also be derived without reference to this
mathematical theory. Our study is based on the construction of
graphs among the pluviometric stations, whereby the presence of
edges connecting pairs of stations depends on whether they are
(are not) Pearson-correlated over a given time interval which, in
the current study, was taken to be one month. As a general result,
we find that this newly reported scale invariant property is present
for all months and different sub-regions that have been
investigated. Pairs of Pearson-correlated stations can be found
even if the distance between them is very large. On the other hand,
scaling behavior has been found in the length interval comprised
between 20 and 500 km. The upper limit largely exceeds the
bounds for scaling behavior in the spatial Hurst analysis. Thus, the
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new method certainly identifies the presence of non-local
couplings among pairs of quite distant stations, suggesting a
new type of scale invariant behavior that has been overlooked by
Hurst analysis.

The results for precipitation data in Northeast Brazil allow a
clear interpretation of the new results. Indeed, the values for the
scaling exponent « indicate that it assumes large values (>1.65)
within regions that are subject to the same precipitation systems.
In opposition to the analysis by temporal and spatial Hurst
exponents, the current study does not distinguish, from the bare
value of «, distinct patterns for the southern and northern regions
of Northeast Brazil. However, the values of « for graphs that
include stations of both sub-regions are noticeable smaller than
the previous ones. This hints that small values of « indicate that the
stations within the set suffer the influence of distinct climatic
systems. Our results confirm the complex climate and precipita-
tion patterns of Northeast Brazil.

The results we discussed above, based on a non-local causality
paradigm, indicate that the development of this particular
framework uncovers new aspects of the climate system. Several
other properties from our analysis that are expressed by the
measures used to characterize the obtained graphs will be
discussed in a forthcoming work.
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